Mechanical model of neural tissue displacement during Lorentz effect imaging.
نویسندگان
چکیده
Allen Song and coworkers recently proposed a method for MRI detection of biocurrents in nerves called "Lorentz effect imaging." When exposed to a magnetic field, neural currents are subjected to a Lorentz force that moves the nerve. If the displacement is large enough, an artifact is predicted in the MR signal. In this work, the displacement of a nerve of radius a in a surrounding tissue of radius b and shear modulus mu is analyzed. The nerve carries a current density J and lies in a magnetic field B. The solution to the resulting elasticity problem indicates that the nerve moves a distance BJ/4mu a2ln(b/a). Using realistic parameters for a human median nerve in a 4T field, this calculated displacement is 0.013 microm or less. The distribution of displacement is widespread throughout the tissue, and is not localized near the nerve. This displacement is orders of magnitude too small to be detected by conventional MRI methods.
منابع مشابه
A Computational study on the effect of different design parameters on the accuracy of biopsy procedure
Needle insertion is a minimally invasive technique in diagnosing and treating tumors. However, to perform a surgery accurately, the tissue should have minimum amount of displacement during needle insertion so that it reaches the target tissue. Therefore, the tissue membrane has to move less to decrease rupturing under the membrane. In this study, the effect of different design parameters on dis...
متن کاملImaging of shear waves induced by Lorentz force in soft tissues.
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA p...
متن کاملPrediction of forging force and barreling behavior in isothermal hot forging of AlCuMgPb aluminum alloy using artificial neural network
In the present investigation, an artificial neural network (ANN) model is developed to predict the isothermal hot forging behavior of AlCuMgPb aluminum alloy. The inputs of the ANN are deformation temperature, frictional factor, ram velocity and displacement whereas the forging force, barreling parameter and final shape are considered as the output variable. The developed feed-forward back-prop...
متن کاملDesign and Fabrication of a Portable 1-DOF Robotic Device for Indentation Tests
There are many tactile devices for indentation examinations to measure mechanical properties of tissue. The purpose of this paper is to develop a portable indentation robotic device to show its usability for measuring the mechanical properties of a healthy abdominal tissue. These measurements will help to develop suitable mathematical models representing abdominal tissue. A 1-DOF portable robot...
متن کاملبررسی شدت نسبی سیگنال تصاویر Magnetic Resonance در بافت رترودیسکال و عضله پتریگوئید خارجی و رابطه آن با یافتههای Magnetic Resonance Imaging
Background and Aims: Disc displacement is the most common temporomandibular joint disorder and magnetic resonance imaging (MRI) is the gold standard in its diagnosis. This disorder can lead to changes in signal intensity of magnetic resonance (MR). The purpose of this study was evaluation of correlation between relative signal intensity of MR images of retrodiscal tissue, superior and inferior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2009